I13S Laboratory, UNS-CNRS ﬁ

Constraint-Based Error Localization

LocFaults: A new flow-driven and constraint-based error
localization approach

Mohammed Bekkouche, Michel Rueher, Hélene Collavizza

{bekkouche,helen,rueher}@unice.fr

13S/CNRS, BP 121, 06903 Sophia Antipolis Cedex, France
University of Nice-Sophia Antipolis

SAC 2015
April 13 - 17, 2015

Mohammed, Hélene, Michel SAC 2015 Constraint-Based Error Localization


{bekkouche,helen,rueher}@unice.fr

1
I13S Laboratory, UNS-CNRS

Outline

Introduction
Example

LocFaults approach
Experiments
Related work

Conclusion and future work

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



Introduction
1
I13S Laboratory, UNS-CNRS

Introduction

Motive to solve the subject

Error localization is an important task to debug an erroneous
program but complex at the same time

— When a program is not conform to its specification, i.e.,
the program is erroneous :
e BMC(Bounded Model Checking) and testing tools can
generate one or more counterexamples
e The trace of the counterexample is often long and
complicated to understand
e The identification of erroneous portions of the code is
hard even for experienced programmers

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



Introduction

1
I13S Laboratory, UNS-CNRS 93{

Introduction
The problem: inputs and goal

e A program contradicts its specification
e The violated postcondition POST
e A counterexample CE provided by a BMC tool

Goal

A reduced set of suspicious statements allowing the
programmer to understand the origin of his mistakes

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



Introduction

1
I13S Laboratory, UNS-CNRS 93{

Introduction
The ideas

® The program is modeled in a CFG in DSA form

® The program and its specification are translated in
numerical constraints

©® CE : a counterexample, PATH : an erroneous path

O The CSP C = CEU PATH U POST is inconsistent

Key issues

e \What are the erroneous instructions on PATH that make
C inconsistent ?

e Which subsets remove to make C feasible ?

e What paths to explore ? — path of CE, deviations
from CE

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



Example

I13S Laboratory, UNS-CNRS

Example

Calculate the absolute value of i-j

1| class AbsMinus {

2| /«returns|i—j|,the absolute value of i minus jx*/
3| /*@ ensures

4 Q@ (result==|i—j|);

5 Q@x/

6 void AbsMinus (int i, int j) {

7 int result;

8 int k = 0;

9 it (i<=1j) {

10 k = k+2; //error:k = k+2 instead of k=k+1
11 1

12 if (k=18 i !=j) {

13 result = j—i;

14 }

15 else {

16 result = i—j;

17 }

18 }

19| }

Mohammed, Héléne, Michel Constraint-Based Error Localization



0N A WN

Example

Calculate the absolute value of i-j

Example

I13S Laboratory, UNS-CNRS

class AbsMinus {
/+returns|i—j|,the absolute
/+@ ensures
Q@ (result==|i—j|);
Q@x/
void AbsMinus (int i, int
int result;
int k = 0;
if (i<=17j){
k = k+2; //error:
}
if (k=18&& i !'=j) {
result = j—i;
}
else {
result = i—j;
}
¥

value

A

of

minus s/

k = k+2 instead of k=k+1

{

Mohammed, Hélene, Michel

Constraint-Based Error Localization

Ise

ko




Example

I13S Laboratory, UNS-CNRS

Example

The path of the counterexample

POST:{n ==|i —j|}
{io="0,jo=1,ko =0,ki = ko +2,11 =

[CE{(o = 0JA Go —= 1] |

io — jo, 1 = |i — j|} is inconsistent

Only one MCS on the path : {r =ip —jo} @

ki = ko +2) <N\ Error | ki = ko
M

POST:{r == |i — j|}

i
|o

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



Example

I13S Laboratory, UNS-CNRS

Exemple
The path obtained by deviating the condition iy < jy

The deviated condition : {ip < jo}
P:{IO :07j0 = 17k0 :07k1 =0,n=

[CE{(o = 0JA (o —= 1] |

_1}
P U{r = |i — j|} is inconsistent
se (deviation)

The deviation {iy < jo} does not correct

the program

Ise

POST:{r; == [ —J|} is UNSAT

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization




Example

I13S Laboratory, UNS-CNRS

Example
The path by deviating the condition ky = 1 A ip! = jo

The deviated condition : {(k1 = 1A ip! = jo)}
P = {lo = 07_/'0 = ]_7 ko = 07 k1 = 27,‘1 = ]_} |CE:{(f0 == OL/\ (o == )}l

The deviation {(ki =1 A ip! = jo)} corrects @
the program
C={ip=0,jo=1,k =0,k = ko +2, (k1 = 1
1A= jo)}

e

If (deviation Is:

o
| |

POST {1 == i —JI}

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization




Example

I13S Laboratory, UNS-CNRS

Example
The path by deviating the condition ky = 1 A ip! = jo

The deviated condition : {(k; =1 Aip! = jo)}

P={io=0,jo=1k =0,ki =2,n =1} [E10 =% to == V)]
nkg =0
PU{n = |i —j|} is consistent ke

The deviation {(ki =1 A ip! = jo)} corrects @
the program
C={ip=0,jo=1,k =0,k = ko +2, (k1 = 1
1A= jo)}

e

o
| |

C is inconsistent

MCS on the path : {ko = 0}, {kl = ko + 2} If (deviation Is

POST:{r == |i — J|J is SAT

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization




Example

I13S Laboratory, UNS-CNRS

Example

The path of a non-minimal deviation : {ip < jo, ki = 1A ip! =jo}

The deviated conditions :

{io <Jjo,(k =1Aig! = jo)} [CE{(o == 0} A (o == 1)} ]
P={ib=0,jo=1,k =0,ki =0, =1}

Ise (deviation)

ki =k +2
1A'0 =Jo
If ( )
K

ro=Jjo—io rno=ip —Jjo

~[POST:{ry == i — jI}

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



Example

I13S Laboratory, UNS-CNRS

Example

The path of a non-minimal deviation : {ip < jo, ki = 1A ip! =jo}

The deviated conditions :
{io < Jjo, (ki =1NAlo! = jo)} [CE{(o == 0} A (o == 1)} ]
P={ip=0,jo=1,k =0,ks =0,n =1} pa—

PU{r = |i — j|} is consistent

The deviation is not minimal

Ise (deviation)

k1= ko DN Eror]
1A'0 =Jo
If ( )
K

n=Jo—o
A [POST:{r, == |i — j|} is SAT

Constraint-Based Error Localization

Mohammed, Héléne, Michel SAC 2015




LocFaults approach ﬁ
I13S Laboratory, UNS-CNRS =71

LocFaults approach
MCS: Minimal Correction Subset

MCS: Definition

Let C an infeasible set of constraints

MCC
MC CisaMCS < { Sol(< X,C\M,D >) # 0
AC” C M : Sol(< X,C\C",D >) =10

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



LocFaults approach ﬁ
I13S Laboratory, UNS-CNRS =71

LocFaults approach
MCS: Minimal Correction Subset

MCS: Definition

Let C an infeasible set of constraints

McCcC
M C Cis a MCS & Sol(< X, C\M,D >) # 0
3C" C M : Sol(< X, C\C",D >) = 0

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



LocFaults approach ﬁ
I13S Laboratory, UNS-CNRS =71

LocFaults approach
MCS: Minimal Correction Subset

MCS: Definition

Let C an infeasible set of constraints

MCC
MC CisaMCS < { Sol(< X,C\M,D >) # 0
AC” € M : Sol(< X,C\C",D >) =10

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



1
LocFaults approach
I13S Laboratory, UNS-CNRS ;13{

LocFaults approach
MCS: Minimal Correction Subset

MCS: Definition

Let C an infeasible set of constraints

MCC
M C Cis a MCS & Sol(< X, C\M,D >) # 0
3C" € M : Sol(< X, C\C",D >) = 0

MCS: Example

e C={qg:i=0,:v=5a:w=6cg:z=i+v+w,c:((z=
0Vi#0)A(v>0)A(w>0))} is inconsistent

e C has 4 MCS: {c1}, {a}, {ca}.{c, 3}

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



1
LocFaults approach
I13S Laboratory, UNS-CNRS ;13{

LocFaults approach
(LocFaults) algorithm

e |solation of MCS on the path of CE
e DFS exploration of CFG by propagating CE and by
deviating at most k conditional statements cy, .., ¢,
e P: propagation constraints derived from CE (of the form
variable = constant)

e (C: constraints of path up to ¢k

o If P = POST:
* {-¢,..,ck} is a correction,
* MCS of CU{—cy,.., ¢k} are corrections

e A bound for the MCS calculated and the conditions
deviated

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



1
Experiments I13S Laboratory, UNS-CNRS ;13{

Experimental evaluation

Tools used

¢ LocFaults: our implementation
— The IBM solvers CP OPTIMIZER and CPLEX
— The tool CPBPV to generate the CFG and CE
— Benchmarks: Java programs

e BugAssist: the tool of error localization for BugAssist

approach
— The MaxSAT solver MSUnCore2
— Benchmarks: ANSI-C programs

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



1
Experiments I13S Laboratory, UNS-CNRS ;13{

Experimental evaluation

Programs built

e Variations on the Tritype program :
— TritypeV1, TritypeV2, TritypeV3, TritypeV4, TritypeVbh
— TritypeV6 (returns the perimeter of the triangle)
— TritypeV7, TritypeV8 (return non linear expressions)
e TCAS(Traffic Collision Avoidance System), a
realistic benchmark :

— 1608 test cases, except cases for overflow
PositiveRAAIt Thresh table
— TcasKO ... TcasKO41

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



Experiments 13S Laboratory, UNS-CNRS

Experimental evaluation
Results (MCS identified)

Program| _ Counter-example _|Errord =T =T ockaults ., = Bughssist
B 7
TritypeVI{i = 2,/ = 3, k = 2}{ 54 [{54} 26 .32 / 3,36, 48,
{Aﬁ}i30¥{25} {53, 5&},{30;,{25} 57, 68}
- 21, 26, 27
TritypeV2|{i = 2, j = 2, k = 4} 53 |{54} 21 {29, 51% / {29;3 o 32,
26 3244 33, 35, 36,
35},1271.{25 3335, 36
e RES! by
- 21
TritypeV3l{i = 1,j = 2, k = 1}| 31 |{50} 2% {33, 45} / 291,3216,3237,
34, 36, 37,
iﬁ%: 3 ggg 49, 68}
By . . 26, 27, 29,
|TritypeVAI{i = 2,j = 3, k = 3}| 45 |{46}|{45},{33},{25} {26, 32} 1% %%% 30.32, 33,
32)35,57 68}
TritypeV5[{i = 2, j = 3, k = 3}{32,45[{40} 26 35{342945 25 / 26, 27, 29,
29 35 531 {28 0,'32,'33,
35 573 128 35, 49, 68}
28, 29, 31
TritypeV6|{i = 2, j = 1, k = 2} 58 |{58} 31 / / 2,'35,37,]
{31}}32},{27} 65, 72}
) ; ; {72, 37, 53,
TritypeV7|{i = 2,j = 1, k = 2}{ 58 [{58} 31 / / 49,'29,'35,
' . B3 o 232
65, 34, 62
- 19, 61, 79
TritypeV8|{i = 3,/ = 4, k = 3}| 61 [{61} 29 / / %5;27_*33;
{35}}30}‘{25} 30 %-ﬁ %
48,5154}

LocFaults provides a more informative and explanatory localization

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



1
Experiments I13S Laboratory, UNS-CNRS 93{

Experimental evaluation

Results (computation times for non linear programs)

LocFaults BugAssist
Programme L
P =0 | <1 <2 <3 P L
TritypeV7 |0,7225|0,0515(0,1125|0,119s|1,1445|0, 1405|20, 373s

TritypeV8 |0, 731s| 0,08s |0, 143s|0, 15650, 16250, 216525, 5625

LocFaults is an order of magnitude faster than BugAssist on these two
benchmarks

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



Experiments I13S Laboratory, UNS-CNRS

Experimental evaluation

Results (number of errors localized for TCAS)

Programme Nb_E Nb_CE LF BA V21 1 16 16 16
V1 T 131 131 131 V22 | 1 11 11 11
V2 2 67 67 67 V23 | 1 41 41 41
V3 1 23 23 13 V24 | 1 7 7 7
V4 1 20 4 20 V25 | 1 3 2 3
V5 1 10 9 10 V26 | 1 11 7 11
V6 1 12 11 12 V27 | 1 10 9 10
V7 1 36 36 36 V28 | 1 75 74 58
V8 T T 1 1 V29 | 1 18 17 14
V9 1 7 7 7 V30 | 1 57 57 57
V10 2 14 12 14 V34 | 1 77 77 77
Vil 2 14 12 14 V35 | 1 75 74 58
V12 1 70 45 48 V36 | 1 | 122 120 126
V13 1 4 4 4 V37 | 1 04 21 04
V14 1 50 50 50 V39 | 1 3 2 3
V16 1 70 70 70 V40 | 2 | 122 72 122
Vi7 1 35 35 35 V4l | 1 20 16 20
V18 1 29 28 29
V19 1 19 18 19
V20 1 18 8 18 The performances of LocFaults and

BugAssist are very similar on this

programs well adapted for a Boolean solver

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization 17 /20



1
Rl I13S Laboratory, UNS-CNRS 93{

Related work
SAT-based approaches

BugAssist
e A BMC method, like ours
e Major differences :

— It transforms the entire program into a SAT formula
— It based on the use of MaxSAT solvers

-+ Global approach
— The complement of the MaxSAT set does not necessarily

correspond to the instructions on the same path
— Displaying the union of these complements

Constraint-Based Error Localization

Mohammed, Héléne, Michel SAC 2015



1
Rl I13S Laboratory, UNS-CNRS

Related work

Approaches based on systematic testing

Tarantula, Ochiai, AMPLE, Jaccard, Heuristics |1l

e Ranking of suspicious statements detected during the
execution of a test battery

-+ Simple approaches

— Need many test cases

Approaches that require the existence of an oracle
— Decide if the result of tens of thousands of test is

just

Our framework is less demanding
— Bounded Model Checking

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



1
I13S Laboratory, UNS-CNRS 93{

Conclusion and future work

Conclusion and future work

e Our flow-based and incremental approach is a good way
to help the programmer with bug hunting
— it locates the errors around the path of the
counter-example

e We plan :
- to develop an interactive version of our tool :
— to provide the localizations one after the others
— to take benefit from the user knowledge to select the
condition that must be diverted
- to extend our approach in straightforward way for error
localization in programs with floating-point numbers
computations

Mohammed, Héléne, Michel SAC 2015 Constraint-Based Error Localization



	Introduction
	Example
	LocFaults approach
	Experiments
	Related work
	Conclusion and future work

