

Error localization

A bounded constraint-based approach to aid for error localization

Bekkouche Mohammed, Collavizza Hélène, Rueher Michel

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271 06900 Sophia Antipolis, France JFPC 2014

November 20, 2014

Bekkouche Mohammed, Collavizza Hélène, Rueher Michel - Error localization

- 1 Introduction
- 2 Approach
- 3 Example
- 4 State of the art
- 5 Experimentation

æ

- BMC(Bounded Model Checking) and testing tools can generate one or more counterexamples
- A counterexample provides an execution trace
- The trace of the counterexample is often long and complicated to understand
- The identification of erroneous portions of the code is complex for the programmer
- \rightarrow Need to develop localization tools to assist the developer in this task

ヘロト ヘヨト ヘヨト ヘヨト

- BMC(Bounded Model Checking) and testing tools can generate one or more counterexamples
- A counterexample provides an execution trace
- The trace of the counterexample is often long and complicated to understand
- The identification of erroneous portions of the code is complex for the programmer
- \rightarrow Need to develop localization tools to assist the developer in this task

ヘロト ヘヨト ヘヨト ヘヨト

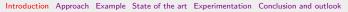
Inputs

- A program contradicts its specification : the violated postcondition POST
- A counterexample CE provided by a BMC tool

Outputs

A reduced set of suspicious statements allowing the programmer to understand the origin of his mistakes

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

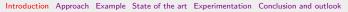


Inputs

- A program contradicts its specification : the violated postcondition POST
- A counterexample CE provided by a BMC tool

Outputs

A reduced set of suspicious statements allowing the programmer to understand the origin of his mistakes

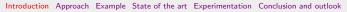


- 1 The program is modeled in a CFG in DSA form
- 2 The program and its specification are translated in numerical constraints
- **3** *CE* : a counterexample, **PATH** : an erroneous path
- 4 The CSP $C = CE \cup PATH \cup POST$ is inconsistent

- What are the erroneous instructions on PATH that make C inconsistent ?
- Which subsets remove to make C feasible ?
- What paths to explore ? → path of CE, deviations from CE

э

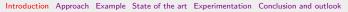
イロト 人間ト イヨト イヨト



- 1 The program is modeled in a CFG in DSA form
- 2 The program and its specification are translated in numerical constraints
- **3** *CE* : a counterexample, **PATH** : an erroneous path
- 4 The CSP $C = CE \cup PATH \cup POST$ is inconsistent

- What are the erroneous instructions on PATH that make C inconsistent ?
- Which subsets remove to make C feasible ?
- What **paths** to explore ? → **path** of CE, **deviations** from CE

イロン イボン イヨン イヨン



- 1 The program is modeled in a CFG in DSA form
- 2 The program and its specification are translated in numerical constraints
- **3** *CE* : a counterexample, **PATH** : an erroneous path
- 4 The CSP $C = CE \cup PATH \cup POST$ is inconsistent

- What are the erroneous instructions on PATH that make C inconsistent ?
- Which subsets remove to make C feasible ?

■ What **paths** to explore ? → **path** of CE, **deviations** from CE

イロン イボン イヨン イヨン

- 1 The program is modeled in a CFG in DSA form
- 2 The program and its specification are translated in numerical constraints
- **3** *CE* : a counterexample, **PATH** : an erroneous path
- 4 The CSP $C = CE \cup PATH \cup POST$ is inconsistent

- What are the erroneous instructions on PATH that make C inconsistent ?
- Which subsets remove to make *C* feasible ?
- What **paths** to explore ? → **path** of CE, **deviations** from CE

イロン イボン イヨン イヨン

MCS: Definition

Let C an infeasible set of constraints

$$M \subseteq C \text{ is a MCS} \Leftrightarrow \begin{cases} M \subseteq C \\ Sol(< X, C \setminus M, D >) \neq \emptyset \\ \nexists C'' \subset M : Sol(< X, C \setminus C'', D >) = \emptyset \end{cases}$$

MCS: Example

C = {c₁ : i = 0, c₂ : v = 5, c₃ : w = 6, c₄ : z = i + v + w, c₅ : ((z = 0 ∨ i ≠ 0) ∧ (v ≥ 0) ∧ (w ≥ 0))} is inconsistent
 C has 4 MCS: {c₁}, {c₄}, {c₅}, {c₂, c₃}

MCS: Definition

Let C an infeasible set of constraints

 $M \subseteq C \text{ is a MCS} \Leftrightarrow \begin{cases} M \subseteq C \\ Sol(< X, C \setminus M, D >) \neq \emptyset \\ \frac{1}{2}C'' \subset M : Sol(< X, C \setminus C'', D >) = \emptyset \end{cases}$

MCS: Example

C = {c₁ : i = 0, c₂ : v = 5, c₃ : w = 6, c₄ : z = i + v + w, c₅ : ((z = 0 ∨ i ≠ 0) ∧ (v ≥ 0) ∧ (w ≥ 0))} is inconsistent
 C has 4 MCS: {c₁}, {c₄}, {c₅}, {c₂, c₃}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MCS: Definition

Let C an infeasible set of constraints

 $M \subseteq C \text{ is a MCS} \Leftrightarrow \begin{cases} M \subseteq C \\ Sol(< X, C \setminus M, D >) \neq \emptyset \\ \frac{1}{2}C'' \subset M : Sol(< X, C \setminus C'', D >) = \emptyset \end{cases}$

MCS: Example

C = {c₁ : i = 0, c₂ : v = 5, c₃ : w = 6, c₄ : z = i + v + w, c₅ : ((z = 0 ∨ i ≠ 0) ∧ (v ≥ 0) ∧ (w ≥ 0))} is inconsistent
 C has 4 MCS: {c₁}, {c₄}, {c₅}, {c₂, c₃}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MCS: Definition

Let C an infeasible set of constraints

$$M \subseteq C \text{ is a MCS} \Leftrightarrow \begin{cases} M \subseteq C \\ Sol(< X, C \setminus M, D >) \neq \emptyset \\ \nexists C'' \subset M : Sol(< X, C \setminus C'', D >) = \emptyset \end{cases}$$

MCS: Example

- Isolation of MCS on the path of CE
- DFS exploration of CFG by propagating CE and by deviating at most k conditional statements c₁,.., c_k
 - P: propagation constraints derived from CE (of the form variable = constant)
 - C: constraints of **chemin** up to c_k

• If
$$P \models POST$$
:

- * $\{\neg c_1, .., \neg c_k\}$ is a correction,
- * MCS of $C \cup \{\neg c_1, .., \neg c_k\}$ are corrections

A bound for the MCS calculated and the conditions deviated

イロト 不得 トイヨト イヨト

- Isolation of MCS on the path of CE
- DFS exploration of CFG by propagating CE and by deviating at most k conditional statements c₁,..,c_k
 - P: propagation constraints derived from CE (of the form variable = constant)
 - C: constraints of **chemin** up to c_k

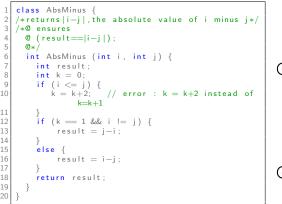
• If
$$P \models POST$$
:

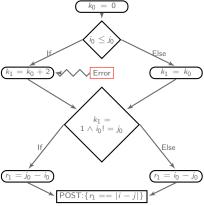

- * $\{\neg c_1, .., \neg c_k\}$ is a correction,
- * MCS of $C \cup \{\neg c_1, .., \neg c_k\}$ are corrections

A bound for the MCS calculated and the conditions deviated

・ロット (雪) (日) (日)

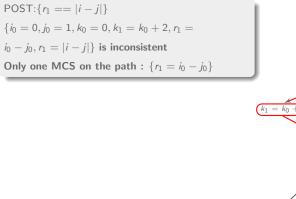

```
class AbsMinus {
  /*returns | i-j |, the absolute value of i minus j*/
3
  /*@ ensures
     @ (result==|i-i|);
4
5
    @*/
6
     int AbsMinus (int i, int j) {
7
       int result;
8
       int k = 0;
9
       if (i \le i)
          k = k+2; // error : k = k+2 instead of
                k=k+1
       if (k == 1 && i != i) {
           result = i-i;
       else {
16
           result = i-i;
       return result:
19
20
```



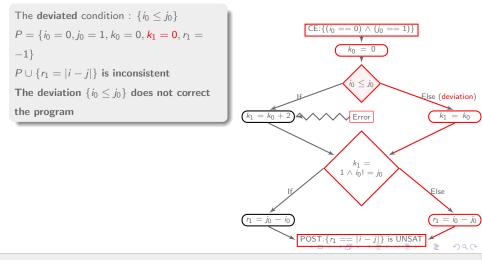

*ロト *部ト *注ト *注ト

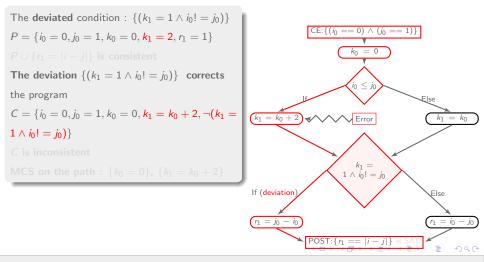
Bekkouche Mohammed, Collavizza Hélène, Rueher Michel - Error localization

э

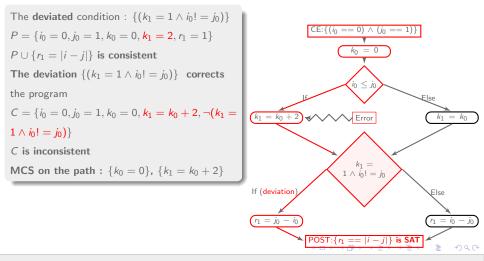


Bekkouche Mohammed, Collavizza Hélène, Rueher Michel — Error localization


э



Exemple The **path** obtained **by deviating** the condition $i_0 \le j_0$



The path by deviating the condition $k_1 = 1 \land i_0! = j_0$

Bekkouche Mohammed, Collavizza Hélène, Rueher Michel — Error localization

The path by deviating the condition $k_1 = 1 \land i_0! = j_0$

Tarantula, Delta Debugging

- Ranking of suspicious statements detected during the execution of a test battery
- + Simple approaches
- Need many test cases
 - Approaches that require the existence of an oracle \rightarrow Decide if the result of **tens of thousands** of test i

Our framework is less demanding \rightarrow Bounded Model Checking

<ロ> <同> <同> < 同> < 同>

Tarantula, Delta Debugging

Ranking of suspicious statements detected during the execution of a test battery

- + Simple approaches
 - Need many test cases
 Approaches that require the existence of an oracle
 → Decide if the result of tens of thousands of test is just

Our framework is less demanding \rightarrow Bounded Model Checking

イロト イポト イヨト イヨト

Tarantula, Delta Debugging

Ranking of suspicious statements detected during the execution of a test battery

- + Simple approaches
 - Need many test cases
 Approaches that require the existence of an oracle
 → Decide if the result of tens of thousands of test is just

Our framework is less demanding

 $\rightarrow\,$ Bounded Model Checking

イロト イポト イヨト イヨト

BugAssist

- A BMC method, like ours
- Major differences :
 - \rightarrow It transforms the entire program into a SAT formula
 - $\rightarrow\,$ It based on the use of MaxSAT solvers
- + Global approach
 - The complement of the MaxSAT set does not necessarily correspond to the instructions on the same path
 - \rightarrow Displaying the union of these complements

ヘロン 人間 とくほと 人ほとう

BugAssist

- A BMC method, like ours
- Major differences :
 - \rightarrow It transforms the entire program into a SAT formula
 - \rightarrow It based on the use of MaxSAT solvers
- + Global approach
 - The complement of the MaxSAT set does not necessarily correspond to the instructions on the same path
 - $\rightarrow~$ Displaying the union of these complements

LocFaults: our implementation

- \rightarrow The MIP solver of IBM ILOG CPLEX
- $\rightarrow~$ The tool CPBPV to generate the CFG and CE
- \rightarrow Benchmarks: Java programs
- BugAssist: the tool of error localization for BugAssist approach
 - \rightarrow The MaxSAT solver MSUnCore2
 - → Benchmarks: ANSI-C programs

< ロ > < 同 > < 回 > < 回 > < □ > <

Simple programs

- → AbsMinus, Minmax, Mid (illustrative programs)
- → Maxmin6var (program without junctions)
- → Tritype, TriPerimetre (programs with junctions)
- $\rightarrow\,$ Several erroneous versions for each program

Example: TriPerimetre \rightarrow TriPerimetreKO, TriPerimetreKO2, TriPerimetreKO3

TCAS(Traffic Collision Avoidance System), a realistic benchmark

→ 1608 test cases, except cases for overflow *PositiveRAAltThresh* table

→ TcasKO . . . TcasKO41

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Simple programs

- → AbsMinus, Minmax, Mid (illustrative programs)
- → Maxmin6var (program without junctions)
- → Tritype, TriPerimetre (programs with junctions)
- → Several erroneous versions for each program Example: TriPerimetre → TriPerimetreKO, TriPerimetreKO2. TriPerimetreKO3

TCAS(Traffic Collision Avoidance System), a realistic benchmark

 $\rightarrow~1608$ test cases, except cases for overflow PositiveRAAltThresh table

→ TcasKO TcasKO41

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Program	Counterexample	LocFaults		< 3	BugAssist		
- Togram	counterexample	= 0	<u>1</u>	2		Bugrooloc	
AbsMinusKO3	$\{i = 0, j = 1\}$	{20}	$\frac{16}{20}$	{ <u>16</u> }, { <mark>14</mark> }, {12} {20}	$\{ 16 \}, \{ 14 \}, \{ 12 \}$ $\{ 20 \}$	{16,20}	
MinmaxKO	$\{in_1 = 2, in_2 = 1, in_3 = 3\}$	{10},{ 19 }	{ <u>18</u> },{10} {10},{ 19 }	{ <u>18</u> },{10} {10},{ 19 }	{ <u>18</u> },{10} {10},{ 19 }	{18, 19 , 22}	
MidKO	$\{a = 2, b = 1, c = 3\}$	{ 19 }	{19}	{ 19 }	${14, 23, 26} {19}$	{14, 19 , 30}	
Maxmin6varKO4	$ \{a = 1, b = -3, c = -4, \\ d = -2, e = -1, f = -2 \} $	{116}	{116}	{116}	{ <u>12</u> , <u>15</u> , <u>19</u> } {116}	{ 12 , 166}	
TritypeKO2	$\{i = 2, j = 2, k = 4\}$	{54}	{21} {26} {35}, {27}, {25}			{21, 26, 27, 29, 30, 32, 33, 35, 36,	
			{ 53 },{25},{27} {54}	${25}$ ${32, 44}, {33}, {25},$ ${27}$	${25}$ ${32, 44}, {33}, {25}, {27}$	53 , 68}	
				{35}, {27}, {25} {53}, {25}, {27} {54}	{35}, {27}, {25} {53}, {25}, {27} {54}		
TritypeKO4	${i = 2, j = 3, k = 3}$	{46}	{ 45 },{33},{25} {46}	$\begin{array}{r} \{ \underline{26}, \underline{32} \} \\ \{ \underline{29}, \underline{32} \} \\ \{ \underline{45} \}, \{ \underline{33} \}, \{ \underline{25} \} \end{array}$	$ \begin{array}{r} \{26, 32\} \\ \{29, 32\} \\ \{32, 35, 49\}, \{25\} \\ \{32, 25, 52\}, \{25\} \\ \{32, 25, 52\}, \{25\} \\ \{32, 25, 52\}, \{25\} \\ \{32, 52\}, \{32, 52\}, \{32, 52\}, \{32\} \\ \{32, 52\}, \{32\}, \{$	{26, 27, 29, 30, 32, 33, 35, 45 , 49,	
				{46}	{32, 35, 53}, {25} {32, 35, 57}, {25} {45}, {33}, {25} {46}	68}	
TriPerimetreKO	$\{i = 2, j = 1, k = 2\}$	{58 }	$ \begin{array}{c} \{ \underline{31} \} \\ \{ \underline{37} \}, \{ \underline{32} \}, \{ 27 \} \\ \{ \underline{58} \} \end{array} $	$\begin{array}{c} \{31\\ \{32\}, \{27\}\\ \{58\}\end{array}$	{31} {37},{32},{27} {58}	$\substack{\{28, 29, 31, \\ 32, 35, 37, \\ 65, 72\}}$	

LocFaults provides a more informative and explanatory localization

Bekkouche Mohammed, Collavizza Hélène, Rueher Michel - Error localization

< ロ > < 同 > < 回 > < 回 >

		L	ocFault	s		BugA	Assist
Program	Р		Р	1			
		= 0	≤ 1	≤ 2	≤ 3		-
AbsMinusKO3	0,479 <i>s</i>	0,076 <i>s</i>	0,113 <i>s</i>	0, 357 <i>s</i>	0, 336 <i>s</i>	0,02 <i>s</i>	0,04 <i>s</i>
MinmaxKO	0, 528 <i>s</i>	0,243 <i>s</i>	0, 318 <i>s</i>	0,965 <i>s</i>	1,016 <i>s</i>	0,01 <i>s</i>	0, 09 <i>s</i>
MidKO	0, 524 <i>s</i>	0,065 <i>s</i>	0,078 <i>s</i>	0,052 <i>s</i>	0, 329 <i>s</i>	0,02 <i>s</i>	0,08 <i>s</i>
Maxmin6varKO4	0, 538 <i>s</i>	0,06 <i>s</i>	0,07 <i>s</i>	0, 075 <i>s</i>	0, 56 <i>s</i>	0,04 <i>s</i>	0, 78 <i>s</i>
TritypeKO2	0, 51 <i>s</i>	0,023 <i>s</i>	0, 25 <i>s</i>	2,083 <i>s</i>	3, 864 <i>s</i>	0,02 <i>s</i>	0, 69 <i>s</i>
TritypeKO4	0,497 <i>s</i>	0,023 <i>s</i>	0,095 <i>s</i>	0,295 <i>s</i>	5, 127 <i>s</i>	0,02 <i>s</i>	0, 21 <i>s</i>
TriPerimetreKO	0,518 <i>s</i>	0,047 <i>s</i>	0, 126 <i>s</i>	1,096 <i>s</i>	2, 389 <i>s</i>	0,03 <i>s</i>	0, 64 <i>s</i>

The times of LocFaults are close to the times of BugAssist

Bekkouche Mohammed, Collavizza Hélène, Rueher Michel - Error localization

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Experimental evaluation

Results (Number of errors localized for TCAS)

TcasK021

 <ロ> (日) (日) (日) (日) (日)

	10	10		1	I CashOZI						
	11	11		1	TcasKO22						
Τ	41	41		1	TcasKO23	BA	LF		Nb_CE	Nb_E	Programme
Τ	7	7	Τ	1	TcasKO24	DA	≤ 2	≤ 1	NUD_CE	NUD_L	riogramme
	0	3		1	TcasKO25	131	131	131	131	1	TcasKO
	11	11		1	TcasKO26	67	134	67	67	2	TcasKO2
	10	10		1	TcasKO27	23	2	2	23	1	TcasKO3
	74	75		2	TcasKO28	20	20	16	20	1	TcasKO4
	17	18		2	TcasKO29	10	10	10	10	1	TcasKO5
	57	57		2	TcasKO30	24	36	36	12	3	TcasKO6
	77	77		1	TcasKO34	0	36	23	36	1	TcasK07
	74	75		4	TcasKO35	0	1	1	1	1	TcasKO8
	120	122		1	TcasKO36	7	7	7	7	1	TcasKO9
	110	94		4	TcasKO37	84	65	16	14	6	TcasKO10
	0	3		1	TcasKO39	46	34	16	14	6	TcasKO11
	0	122		2	TcasKO40	70	52	52	70	1	TcasKO12
	17	20		1	TcasKO41	4	3	3	4	1	TcasKO13
						51	6	6	50	1	TcasKO14
The performances of LocFaults are favorably comparable to BugAssist					0	70	22	70	1	TcasKO16	
					0	35	22	35	1	TcasKO17	
					0	28	21	29	1	TcasKO18	
					0	19	13	19	1	TcasKO19	
						18	18	18	18	1	TcasKO20

Bounded approach for error localization

- Bounded DFS exploration
- Bounded MCS calculation
 - \rightarrow To prevent the combinatorial explosion

Based on the use of constraint solvers

- LocFaults provides more accurate and relevant results compared to BugAssist
 - \rightarrow The times of the two tools are similar
- LocFaults locates errors frequently for the TCAS programs

э

ヘロト ヘヨト ヘヨト ヘヨト

- Bounded approach for error localization
 - Bounded DFS exploration
 - Bounded MCS calculation
 - $\rightarrow~$ To prevent the combinatorial explosion
- Based on the use of constraint solvers
- LocFaults provides more accurate and relevant results compared to BugAssist
 - \rightarrow The times of the two tools are similar
- LocFaults locates errors frequently for the TCAS programs

ヘロト ヘ部ト ヘヨト ヘヨト

- Bounded approach for error localization
 - Bounded DFS exploration
 - Bounded MCS calculation
 - $\rightarrow~$ To prevent the combinatorial explosion
- Based on the use of constraint solvers
- LocFaults provides more accurate and relevant results compared to BugAssist
 - \rightarrow The times of the two tools are similar
- LocFaults locates errors frequently for the TCAS programs

э

ヘロト ヘヨト ヘヨト ヘヨト

- Bounded approach for error localization
 - Bounded DFS exploration
 - Bounded MCS calculation
 - $\rightarrow~$ To prevent the combinatorial explosion
- Based on the use of constraint solvers
- LocFaults provides more accurate and relevant results compared to BugAssist
 - \rightarrow The times of the two tools are similar
- LocFaults locates errors frequently for the TCAS programs

ヘロト ヘヨト ヘヨト ヘヨト

Incremental version of the algorithm

Treat programs with loops

Outlook

- Extend our implementation to support more complex non-linear instructions through the use of specialized solvers
- Experiment more of real programs

Treat the programs with floating-point numbers computation

→ Use specialized solvers on floating computations

ヘロト ヘ部ト ヘヨト ヘヨト

Incremental version of the algorithm

Treat programs with loops

Outlook

- Extend our implementation to support more complex non-linear instructions through the use of specialized solvers
- Experiment more of real programs

Treat the programs with floating-point numbers computation

→ Use **specialized solvers** on floating computations

ヘロト ヘ部ト ヘヨト ヘヨト

- Incremental version of the algorithm
- Treat programs with loops
- Extend our implementation to support more complex non-linear instructions through the use of specialized solvers
- Experiment more of real programs
- Treat the programs with floating-point numbers computation

ightarrow Use **specialized solvers** on floating computations

ヘロト ヘ部ト ヘヨト ヘヨト

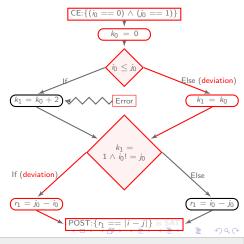
- Incremental version of the algorithm
- Treat programs with loops
- Extend our implementation to support more complex non-linear instructions through the use of specialized solvers
- Experiment more of real programs
- Treat the programs with floating-point numbers computation

 \rightarrow Use **specialized solvers** on floating computations

ヘロト ヘヨト ヘヨト ヘヨト

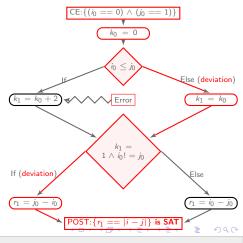
- Incremental version of the algorithm
- Treat programs with loops
- Extend our implementation to support more complex non-linear instructions through the use of specialized solvers
- Experiment more of real programs
- Treat the programs with floating-point numbers computation
 - $\rightarrow~$ Use specialized solvers on floating computations

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・


Thank you for your attention. Questions ?

Bekkouche Mohammed, Collavizza Hélène, Rueher Michel - Error localization

イロト 不得 とくほと くほと


Example The path of a non-minimal deviation : $\{i_0 \leq j_0, k_1 = 1 \land i_0! = j_0\}$

The deviated conditions : $\{i_0 \le j_0, (k_1 = 1 \land i_0! = j_0)\}$ $P = \{i_0 = 0, j_0 = 1, k_0 = 0, k_1 = 0, r_1 = 1\}$ $P \cup \{r_1 = |i - j|\}$ is consistent The deviation is not minimal

The path of a non-minimal deviation : $\{i_0 \le j_0, k_1 = 1 \land i_0! = j_0\}$

The deviated conditions : $\{i_0 \leq j_0, (k_1 = 1 \land i_0! = j_0)\}$ $P = \{i_0 = 0, j_0 = 1, k_0 = 0, k_1 = 0, r_1 = 1\}$ $P \cup \{r_1 = |i - j|\}$ is consistent The deviation is not minimal

The algorithm of Liffiton and Sakallah to compute the MCS subsets

```
Function MCS(C, MCS_b)
  2
      Inputs C: Infeasible set of constraints, MCSh: integer
  3
      Outputs MCS: List of MCS in C of a cardinality less than MCS<sub>b</sub>
       C' \leftarrow \text{AddYVars}(C); MCS \leftarrow \emptyset; k \leftarrow 1;
  4
      while SAT(C') \land k \leq MCS_b do
                  C'_{k} \leftarrow C' \wedge \operatorname{ATMost}(\{\neg y_1, \neg y_2, ..., \neg y_n\}, k)
 6
 7
                  while SAT(C'_{l}) do
                             MCS.add(newMCS).
15
                             C'_k \leftarrow C'_k \land \text{BLOCKINGCLAUSE}(newMCS)
16
                             C' \leftarrow C' \land BLOCKINGCLAUSE(newMCS)
17
18
                  end
19
                  k \leftarrow k + 1
20
      end
21
      return MCS
```

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

The algorithm of Liffiton and Sakallah to compute the MCS subsets

```
Function MCS(C, MCS_b)
  2
      Inputs C: Infeasible set of constraints, MCSh: integer
  3
      Outputs MCS: List of MCS in C of a cardinality less than MCS<sub>b</sub>
       C' \leftarrow \text{AddYVars}(C); MCS \leftarrow \emptyset; k \leftarrow 1;
  4
      while SAT(C') \land k \leq MCS_b do
 5
                  C'_{k} \leftarrow C' \wedge \operatorname{ATMost}(\{\neg y_1, \neg y_2, ..., \neg y_n\}, k)
 6
 7
                  while SAT(C'_{l}) do
                             MCS.add(newMCS).
15
                             C'_k \leftarrow C'_k \land \text{BLOCKINGCLAUSE}(newMCS)
16
                             C' \leftarrow C' \land BLOCKINGCLAUSE(newMCS)
17
18
                  end
19
                  k \leftarrow k + 1
20
      end
21
      return MCS
```

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト


```
Function MCS(C, MCS_b)
  2
       Inputs C: Infeasible set of constraints, MCSh: integer
  3
       Outputs MCS: List of MCS in C of a cardinality less than MCS<sub>b</sub>
       C' \leftarrow \text{AddYVars}(C); MCS \leftarrow \emptyset; k \leftarrow 1;
  4
       while SAT(C') \land k \leq MCS_b do
 5
                  C'_{k} \leftarrow C' \wedge \operatorname{ATMost}(\{\neg y_{1}, \neg y_{2}, ..., \neg y_{n}\}, k)
 6
 7
                  while SAT(C'_{l}) do
                              newMCS \leftarrow \emptyset
                              MCS.add(newMCS).
15
                              C'_k \leftarrow C'_k \land \text{BLOCKINGCLAUSE}(newMCS)
16
                              C' \leftarrow C' \land BLOCKINGCLAUSE(newMCS)
17
18
                  end
19
                  k \leftarrow k + 1
20
       end
21
       return MCS
```

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Approach The algorithm of Liffiton and Sakallah to compute the MCS subsets

```
Function MCS(C, MCS_b)
  2
      Inputs C: Infeasible set of constraints, MCSh: integer
  3
      Outputs MCS: List of MCS in C of a cardinality less than MCS<sub>b</sub>
       C' \leftarrow \text{AddYVars}(C); MCS \leftarrow \emptyset; k \leftarrow 1;
 4
      while SAT(C') \land k \leq MCS_b do
                  C'_{k} \leftarrow C' \wedge \operatorname{ATMost}(\{\neg y_{1}, \neg y_{2}, ..., \neg y_{n}\}, k)
 6
 7
                 while SAT(C'_{l}) do
 8
                             newMCS \leftarrow \emptyset
 9
                             forall the indicator y; do
10
                                        Let y_i indicator of the constraint c_i \in C, and val(y_i) the value of y_i in the solution
                                        calculated of C'_k.
11
                                        si val(y_i) = 0 alors
                                                   newMCS \leftarrow newMCS \cup \{c_i\}
12
13
                                        fin
14
                             end
15
                             MCS.add(newMCS).
                             C'_k \leftarrow C'_k \land \text{BLOCKINGCLAUSE}(newMCS)
16
                             C' \leftarrow C' \land BLOCKINGCLAUSE(newMCS)
17
18
                  end
19
                 k \leftarrow k + 1
20
      end
21
      return MCS
```

Approach The algorithm of Liffiton and Sakallah to compute the MCS subsets

```
Function MCS(C, MCS_b)
  2
      Inputs C: Infeasible set of constraints, MCSh: integer
      Outputs MCS: List of MCS in C of a cardinality less than MCS<sub>b</sub>
  3
       C' \leftarrow \text{AddYVars}(C); MCS \leftarrow \emptyset; k \leftarrow 1;
 4
      while SAT(C') \land k \leq MCS_b do
                  C'_{k} \leftarrow C' \wedge \operatorname{ATMost}(\{\neg y_{1}, \neg y_{2}, ..., \neg y_{n}\}, k)
 6
 7
                  while SAT(C'_{l}) do
 8
                             newMCS \leftarrow \emptyset
 9
                             forall the indicator y; do
10
                                        Let y_i indicator of the constraint c_i \in C, and val(y_i) the value of y_i in the solution
                                        calculated of C'_k.
11
                                        si val(y_i) = 0 alors
                                                   newMCS \leftarrow newMCS \cup \{c_i\}
12
13
                                        fin
14
                             end
15
                             MCS.add(newMCS).
16
                             C'_{k} \leftarrow C'_{k} \land \text{BLOCKINGCLAUSE}(newMCS)
                             C' \leftarrow C' \land BLOCKINGCLAUSE(newMCS)
17
18
                  end
19
                  k \leftarrow k + 1
20
      end
21
      return MCS
```

Approach The algorithm of Liffiton and Sakallah to compute the MCS subsets

```
Function MCS(C, MCS_b)
  2
      Inputs C: Infeasible set of constraints, MCSh: integer
      Outputs MCS: List of MCS in C of a cardinality less than MCS<sub>b</sub>
  3
       C' \leftarrow \text{AddYVars}(C); MCS \leftarrow \emptyset; k \leftarrow 1;
  4
      while SAT(C') \land k \leq MCS_b do
                  C'_{k} \leftarrow C' \land \operatorname{ATMost}(\{\neg y_{1}, \neg y_{2}, ..., \neg y_{n}\}, k)
 6
 7
                  while SAT(C'_{l}) do
 8
                             newMCS \leftarrow \emptyset
 9
                             forall the indicator y; do
10
                                        Let y_i indicator of the constraint c_i \in C, and val(y_i) the value of y_i in the solution
                                        calculated of C'_k.
11
                                        si val(y_i) = 0 alors
                                                   newMCS \leftarrow newMCS \cup \{c_i\}
12
13
                                        fin
14
                             end
15
                             MCS.add(newMCS).
16
                             C'_{k} \leftarrow C'_{k} \land \text{BLOCKINGCLAUSE}(newMCS)
                             C' \leftarrow C' \land BLOCKINGCLAUSE(newMCS)
17
18
                  end
19
                  k \leftarrow k + 1
20
      end
21
      return MCS
```

Approach The algorithm of Liffiton and Sakallah to compute the MCS subsets

```
Function MCS(C.MCS<sub>b</sub>)
  2
       Inputs C: Infeasible set of constraints, MCSh: integer
       Outputs MCS: List of MCS in C of a cardinality less than MCS<sub>b</sub>
  3
       C' \leftarrow \text{AddYVars}(C); MCS \leftarrow \emptyset; k \leftarrow 1;
  4
       while SAT(C') \land k \leq MCS_b do
                   \overrightarrow{C_{k}} \leftarrow \overrightarrow{C'} \wedge \operatorname{ATMOST}(\{\neg y_{1}, \neg y_{2}, ..., \neg y_{n}\}, k)
 6
 7
                   while SAT(C'_{l}) do
 8
                              newMCS \leftarrow \emptyset
 9
                              forall the indicator y; do
10
                                          Let y_i indicator of the constraint c_i \in C, and val(y_i) the value of y_i in the solution
                                          calculated of C'_k.
11
                                          si val(y_i) = 0 alors
                                                      newMCS \leftarrow newMCS \cup \{c_i\}
12
13
                                          fin
14
                              end
15
                              MCS.add(newMCS).
16
                              C'_{k} \leftarrow C'_{k} \land \text{BLOCKINGCLAUSE}(newMCS)
                              C' \leftarrow C' \land BLOCKINGCLAUSE(newMCS)
17
18
                   end
19
                   k \leftarrow k + 1
20
       end
21
       return MCS
```