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Introduction
Motivation

BMC(Bounded Model Checking) and testing tools can
generate one or more counterexamples

A counterexample provides an execution trace

The trace of the counterexample is often long and
complicated to understand

The identification of erroneous portions of the code is
complex for the programmer

→ Need to develop localization tools to assist the
developer in this task
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Introduction
The problem

Inputs

A program contradicts its
specification : the violated
postcondition POST

A counterexample CE provided
by a BMC tool

Outputs

A reduced set of suspicious
statements allowing the
programmer to understand
the origin of his mistakes
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Introduction
The ideas

1 The program is modeled in a CFG in DSA form

2 The program and its specification are translated in
numerical constraints

3 CE : a counterexample, PATH : an erroneous path

4 The CSP C = CE ∪ PATH ∪ POST is inconsistent

Key points

What are the erroneous instructions on PATH that make
C inconsistent ?

Which subsets remove to make C feasible ?

What paths to explore ? → path of CE, deviations
from CE
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Approach
MCS: Minimal Correction Subset

MCS: Definition

Let C an infeasible set of constraints

M ⊆ C is a MCS⇔

 M ⊆ C
Sol(< X ,C\M,D >) 6= ∅
@C ′′ ⊂ M : Sol(< X ,C\C ′′,D >) = ∅

MCS: Example

C = {c1 : i = 0, c2 : v = 5, c3 : w = 6, c4 : z = i + v + w , c5 : ((z =

0 ∨ i 6= 0) ∧ (v ≥ 0) ∧ (w ≥ 0))} is inconsistent

C has 4 MCS: {c1}, {c4}, {c5},{c2, c3}
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Approche
(LocFaults) algorithm

Isolation of MCS on the path of CE

DFS exploration of CFG by propagating CE and by
deviating at most k conditional statements c1, .., ck

P: propagation constraints derived from CE (of the form
variable = constant)

C : constraints of chemin up to ck

If P |= POST :

* {¬c1, ..,¬ck} is a correction,
* MCS of C ∪ {¬c1, ..,¬ck} are corrections

A bound for the MCS calculated and the conditions
deviated
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Example
Calculate the absolute value of i-j

1 c l a s s AbsMinus {
2 /∗ r e t u r n s | i−j | , t h e a b s o l u t e v a l u e o f i minus j ∗/
3 /∗@ e n s u r e s
4 @ ( r e s u l t ==| i−j | ) ;
5 @∗/
6 i n t AbsMinus ( i n t i , i n t j ) {
7 i n t r e s u l t ;
8 i n t k = 0 ;
9 i f ( i <= j ) {

10 k = k+2; // e r r o r : k = k+2 i n s t e a d o f
k=k+1

11 }
12 i f ( k == 1 && i != j ) {
13 r e s u l t = j−i ;
14 }
15 e l s e {
16 r e s u l t = i−j ;
17 }
18 r e t u r n r e s u l t ;
19 }
20 }

k0 = 0

i0 ≤ j0

k1 = k0 + 2 Error k1 = k0

k1 =
1 ∧ i0! = j0

r1 = j0 − i0 r1 = i0 − j0

POST:{r1 == |i − j|}

If Else

If Else
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Example
The path of the counterexample

POST:{r1 == |i − j |}

{i0 = 0, j0 = 1, k0 = 0, k1 = k0 + 2, r1 =

i0 − j0, r1 = |i − j |} is inconsistent

Only one MCS on the path : {r1 = i0 − j0}

CE:{(i0 == 0) ∧ (j0 == 1)}

k0 = 0

i0 ≤ j0

k1 = k0 + 2 Error k1 = k0

k1 =
1 ∧ i0! = j0

r1 = j0 − i0 r1 = i0 − j0

POST:{r1 == |i − j|}

If Else

If Else
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Exemple
The path obtained by deviating the condition i0 ≤ j0

The deviated condition : {i0 ≤ j0}

P = {i0 = 0, j0 = 1, k0 = 0, k1 = 0, r1 =

−1}

P ∪ {r1 = |i − j |} is inconsistent

The deviation {i0 ≤ j0} does not correct

the program

CE:{(i0 == 0) ∧ (j0 == 1)}

k0 = 0

i0 ≤ j0

k1 = k0 + 2 Error k1 = k0

k1 =
1 ∧ i0! = j0

r1 = j0 − i0 r1 = i0 − j0

POST:{r1 == |i − j|} is UNSAT

If Else (deviation)

If Else
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Example
The path by deviating the condition k1 = 1 ∧ i0! = j0

The deviated condition : {(k1 = 1 ∧ i0! = j0)}

P = {i0 = 0, j0 = 1, k0 = 0, k1 = 2, r1 = 1}

P ∪ {r1 = |i − j |} is consistent

The deviation {(k1 = 1 ∧ i0! = j0)} corrects

the program

C = {i0 = 0, j0 = 1, k0 = 0, k1 = k0 + 2,¬(k1 =

1 ∧ i0! = j0)}

C is inconsistent

MCS on the path : {k0 = 0}, {k1 = k0 + 2}

CE:{(i0 == 0) ∧ (j0 == 1)}

k0 = 0

i0 ≤ j0

k1 = k0 + 2 Error k1 = k0

k1 =
1 ∧ i0! = j0

r1 = j0 − i0 r1 = i0 − j0

POST:{r1 == |i − j|} is SAT

If Else

If (deviation) Else
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State of the art
Approaches based on systematic testing

Tarantula, Delta Debugging

Ranking of suspicious statements detected during the
execution of a test battery

+ Simple approaches

– Need many test cases
Approaches that require the existence of an oracle

→ Decide if the result of tens of thousands of test is
just

Our framework is less demanding

→ Bounded Model Checking
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State of the art
SAT-based approaches

BugAssist

A BMC method, like ours

Major differences :

→ It transforms the entire program into a SAT formula
→ It based on the use of MaxSAT solvers

+ Global approach
– The complement of the MaxSAT set does not necessarily

correspond to the instructions on the same path

→ Displaying the union of these complements
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Experimental evaluation
Tools used

LocFaults: our implementation
→ The MIP solver of IBM ILOG CPLEX
→ The tool CPBPV to generate the CFG and CE
→ Benchmarks: Java programs

BugAssist: the tool of error localization for BugAssist
approach
→ The MaxSAT solver MSUnCore2
→ Benchmarks: ANSI-C programs
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Experimental evaluation
Programs built

Simple programs
→ AbsMinus, Minmax, Mid (illustrative programs)
→ Maxmin6var (program without junctions)
→ Tritype, TriPerimetre (programs with junctions)
→ Several erroneous versions for each program

Example: TriPerimetre → TriPerimetreKO,
TriPerimetreKO2, TriPerimetreKO3

TCAS(Traffic Collision Avoidance System), a
realistic benchmark
→ 1608 test cases, except cases for overflow
PositiveRAAltThresh table
→ TcasKO . . . TcasKO41

Bekkouche Mohammed, Collavizza Hélène, Rueher Michel — Error localization 15/23
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Experimental evaluation
Results (MCS identified)

Program Counterexample
LocFaults

BugAssist= 0 ≤ 1 ≤ 2 ≤ 3

AbsMinusKO3 {i = 0, j = 1} {20} {16},{14},{12} {16},{14},{12} {16},{14},{12} {16, 20}{20} {20} {20}

MinmaxKO
{in1 = 2, in2 = 1, {10},{19} {18},{10} {18},{10} {18},{10} {18, 19, 22}in3 = 3} {10},{19} {10},{19} {10},{19}

MidKO {a = 2, b = 1, c = 3} {19} {19} {19} {14, 23, 26} {14, 19, 30}{19}

Maxmin6varKO4
{a = 1, b = −3, c = −4, {116} {116} {116} {12, 15, 19} {12, 166}d = −2, e = −1, f = −2} {116}

TritypeKO2 {i = 2, j = 2, k = 4} {54}
{21} {21} {21}

{21, 26, 27,{26} {26} {26}
29, 30, 32,{35},{27},{25}{29, 57},{30},{27},{29, 57},{30},{27},
33, 35, 36,{53},{25},{27} {25} {25}

53, 68}
{54} {32, 44},{33},{25},{32, 44},{33},{25},

{27} {27}
{35},{27},{25} {35},{27},{25}
{53},{25},{27} {53},{25},{27}

{54} {54}

TritypeKO4 {i = 2, j = 3, k = 3} {46}
{45},{33},{25} {26, 32} {26, 32} {26, 27, 29,

{46}
{29, 32} {29, 32}

30, 32, 33,{45},{33},{25} {32, 35, 49},{25}
35, 45, 49,

{46} {32, 35, 53},{25}
68}{32, 35, 57},{25}

{45},{33},{25}
{46}

TriPerimetreKO {i = 2, j = 1, k = 2} {58} {31} {31} {31} {28, 29, 31,
{37},{32},{27} {37},{32},{27} {37},{32},{27} 32, 35, 37,

{58} {58} {58} 65, 72}

LocFaults provides a more informative and explanatory localization
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Experimental evaluation
Results (time calculation)

Program
LocFaults BugAssist

P
L

P L
= 0 ≤ 1 ≤ 2 ≤ 3

AbsMinusKO3 0, 479s 0, 076s 0, 113s 0, 357s 0, 336s 0, 02s 0, 04s
MinmaxKO 0, 528s 0, 243s 0, 318s 0, 965s 1, 016s 0, 01s 0, 09s

MidKO 0, 524s 0, 065s 0, 078s 0, 052s 0, 329s 0, 02s 0, 08s
Maxmin6varKO4 0, 538s 0, 06s 0, 07s 0, 075s 0, 56s 0, 04s 0, 78s

TritypeKO2 0, 51s 0, 023s 0, 25s 2, 083s 3, 864s 0, 02s 0, 69s
TritypeKO4 0, 497s 0, 023s 0, 095s 0, 295s 5, 127s 0, 02s 0, 21s

TriPerimetreKO 0, 518s 0, 047s 0, 126s 1, 096s 2, 389s 0, 03s 0, 64s

The times of LocFaults are close to the times of BugAssist
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Experimental evaluation
Results (Number of errors localized for TCAS)

Programme Nb E Nb CE
LF

BA≤ 1 ≤ 2

TcasKO 1 131 131 131 131
TcasKO2 2 67 67 134 67
TcasKO3 1 23 2 2 23
TcasKO4 1 20 16 20 20
TcasKO5 1 10 10 10 10
TcasKO6 3 12 36 36 24
TcasKO7 1 36 23 36 0
TcasKO8 1 1 1 1 0
TcasKO9 1 7 7 7 7

TcasKO10 6 14 16 65 84
TcasKO11 6 14 16 34 46
TcasKO12 1 70 52 52 70
TcasKO13 1 4 3 3 4
TcasKO14 1 50 6 6 51
TcasKO16 1 70 22 70 0
TcasKO17 1 35 22 35 0
TcasKO18 1 29 21 28 0
TcasKO19 1 19 13 19 0
TcasKO20 1 18 18 18 18

TcasKO21 1 16 16 16 16
TcasKO22 1 11 11 11 11
TcasKO23 1 41 41 41 41
TcasKO24 1 7 7 7 7
TcasKO25 1 3 0 3 3
TcasKO26 1 11 11 11 11
TcasKO27 1 10 10 10 10
TcasKO28 2 75 74 148 121
TcasKO29 2 18 17 35 0
TcasKO30 2 57 57 114 0
TcasKO34 1 77 77 77 77
TcasKO35 4 75 74 148 115
TcasKO36 1 122 120 120 0
TcasKO37 4 94 110 235 236
TcasKO39 1 3 0 3 3
TcasKO40 2 122 0 103 120
TcasKO41 1 20 17 20 20

The performances of LocFaults are

favorably comparable to BugAssist

Bekkouche Mohammed, Collavizza Hélène, Rueher Michel — Error localization 18/23



Introduction Approach Example State of the art Experimentation Conclusion and outlook

Conclusion

Bounded approach for error localization

Bounded DFS exploration
Bounded MCS calculation
→ To prevent the combinatorial explosion

Based on the use of constraint solvers

LocFaults provides more accurate and relevant results
compared to BugAssist

→ The times of the two tools are similar

LocFaults locates errors frequently for the TCAS
programs
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Outlook

Incremental version of the algorithm

Treat programs with loops

Extend our implementation to support more complex
non-linear instructions through the use of specialized
solvers

Experiment more of real programs

Treat the programs with floating-point numbers
computation

→ Use specialized solvers on floating computations
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Thank you for your attention.

Questions ?
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Example
The path of a non-minimal deviation : {i0 ≤ j0, k1 = 1 ∧ i0! = j0}

The deviated conditions :
{i0 ≤ j0, (k1 = 1 ∧ i0! = j0)}
P = {i0 = 0, j0 = 1, k0 = 0, k1 = 0, r1 = 1}
P ∪ {r1 = |i − j |} is consistent
The deviation is not minimal

CE:{(i0 == 0) ∧ (j0 == 1)}

k0 = 0

i0 ≤ j0

k1 = k0 + 2 Error k1 = k0

k1 =
1 ∧ i0! = j0

r1 = j0 − i0 r1 = i0 − j0

POST:{r1 == |i − j|} is SAT

If Else (deviation)

If (deviation) Else
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Approach
The algorithm of Liffiton and Sakallah to compute the MCS subsets

1 Function MCS(C ,MCSb)
2 Inputs C : Infeasible set of constraints, MCSb : integer
3 Outputs MCS : List of MCS in C of a cardinality less than MCSb
4 C ′ ← AddYVars(C); MCS ← ∅; k ← 1;

5 while SAT(C ′) ∧ k ≤ MCSb do
6 C ′k ← C ′ ∧ AtMost({¬y1,¬y2, ...,¬yn},k)

7 while SAT(C ′k ) do
8 newMCS ← ∅
9 forall the indicator yi do

10 Let yi indicator of the constraint ci ∈ C , and val(yi ) the value of yi in the solution

calculated of C ′k .

11 si val(yi ) = 0 alors
12 newMCS ← newMCS ∪ {ci}.
13 fin

14 end
15 MCS.add(newMCS).

16 C ′k ← C ′k ∧ BlockingClause(newMCS)

17 C ′ ← C ′ ∧ BlockingClause(newMCS)

18 end
19 k ← k + 1

20 end

21 return MCS
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