
D
ra

ft

Constraint-Based Fault-Localization

Michel RUEHER

joined work with

Mohammed Bekkouche and Hélène Collavizza

University of Nice Sophia-Antipolis I3S – CNRS

France

INFORMS Computing Society Conference 2015
Sunday, January 11th, 2015

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Plan

1 Problem statement & Motivating example

2 Formalization & Algorithms

3 Experiments

4 Related Work & Conclusion

ICS 2015 CP-Based Fault-Localization Michel Rueher 2

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Problem statement & Motivating example

ICS 2015 CP-Based Fault-Localization Michel Rueher 3

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Context: program verification / debugging

Input An imperative program with numeric statements (over
integers or floating-point numbers)

An assertion to be checked

A counterexample that violates the assertion

Output Information on locations of potentially faulty statements

ICS 2015 CP-Based Fault-Localization Michel Rueher 4

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Fault-Localization – a major problem

• Model checking, testing

→ Generation of counterexamples:
• Input data & wrong outputs (testing)
• Input data & violated post condition / property

→ Execution trace

• Problems

• Execution trace: often lengthy and difficult to understand
• Difficult to locate the faulty statements

Debugging⇒ difficult and time consuming

ICS 2015 CP-Based Fault-Localization Michel Rueher 5

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Fault-Localization – Key issues

• What paths to analyse ?

• Path from the counterexample

• Deviations from the path from the counterexample

• How to identify the suspicious program statements

• Computing Maximal sets of statements satisfying the
postcondition→ Maximal Satisfiable Subset

• Computing Minimal sets of statements to withdraw
→ Minimal Correction Set ?

ICS 2015 CP-Based Fault-Localization Michel Rueher 6

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Example

AbsMinus.java
1 class AbsMinus {
2 / * returns | i−j | , the absolute value of i minus j * /
3 / *@ requires (i ==0) && (j ==1) ;
4 @ ensures (r ==1) ;
5 @* /
6 i n t AbsMinusKO (i n t i , i n t j) {
7 i n t r ;
8 i n t k = 0;
9 i f (i <= j) {

10 k = k+2; / / error in assignement k = k+2 instead of k = k+1
11 }
12 i f (k == 1 && i != j) {
13 r = j−i ;
14 }
15 else {
16 r = i−j ;
17 }
18 return r ;
19 }
20 }

An error has been introduced in line 10
→ for the input data {i = 0, j = 1}, r =−1

ICS 2015 CP-Based Fault-Localization Michel Rueher 7

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Example (cont.)

CFG of AbsMinus Faulty path for {i = 0, j = 1}
→ suspicious statement: {r = i - j}

ICS 2015 CP-Based Fault-Localization Michel Rueher 8

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Example (cont.)

Change decision for 1st IF Change decision fort 2d IF
Post-condition is violated Post-condition holds
→ Path diversion Rejected → suspicious statements:

{cond. of 2d IF}, {k=0}, { k = k+2}

ICS 2015 CP-Based Fault-Localization Michel Rueher 9

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Proposed approach

• Explore the path of the counter-example and paths with at
most k deviations

• Compute sets with at most bmc suspicious statements

Bounds k and bmc are mandatory
because there are an
exponential number

of paths and sets of suspicious statements

ICS 2015 CP-Based Fault-Localization Michel Rueher 10

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Formalization & Algorithms

ICS 2015 CP-Based Fault-Localization Michel Rueher 11

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Defining suspicious statements

Aim: Provide helpful information for error localization on
numeric constraint systems:

ICS 2015 CP-Based Fault-Localization Michel Rueher 12

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Computing all MCS : CAMUS (Liffiton &
Sakallah-2007

ICS 2015 CP-Based Fault-Localization Michel Rueher 13

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

LocFaults – Overall scheme

1 Building of the CFG of a program in DSA form
2 Translating the program and its specification in a set of

numerical constraints
3 Computing bounded MCS of:

• C = CE ∪ PATH ∪ POST
CE: the counter-example
PATH : constraints of the path of CE or of a diverted path
POST: constraints of the post condition

• C = CE ∪ PATH’ ∪ POST where PATH’ is a path with at
most k deviations from the CE

→ MCS on paths “closely” related to the CE

ICS 2015 CP-Based Fault-Localization Michel Rueher 14

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

LocFaults – Computing diverted paths

Process for k = 1
1 Decision for 1st conditional statement is switched and

the input data of CE are propagated→ new path P’
Iff the CSP of P’ is satisfiable, MCS are computed for P’

2 The process is restarted and the decision of the next
conditional statement of P is switched (only one
decision is changed on the whole path)

Process for k > 1
• A conditional node n is marked with the number of

successful switches done on the current path before
reaching n

• At step l , decision for a node marked l ′ is only diverted
iff I′ < l

ICS 2015 CP-Based Fault-Localization Michel Rueher 15

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

LocFaults – Computing MCS for diverted paths

• Let be :
• P, a path generated by the propagation of CE and by k

decision switches of conditional statements
cond1, ..,condk

• C, the constraints of P, and Ck, the constraints generated
by the assignments occurring before condk along Pk

If C ∪ POST holds:
• {¬cond1, ..,¬condk} is a potential correction,

• The MCS of Ck ∪ {¬cond1, ..,¬condk} are potential
corrections
Note: {¬cond1, ..,¬condk} is a ”hard” constraint

ICS 2015 CP-Based Fault-Localization Michel Rueher 16

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Computing MCS for diverted paths – Example

CE: {i = 0, j = 1}
cond1 : ¬(k1 = 1 & i 6= j)
Pk: path in blue
Ck ∪ ¬cond1 : k0 = 0 ∧ k1 = k0 + 2 ∧

¬((k1 = 1 & i 6= j))

Potential corrections:
{k0 = 0}, {k = k + 2}, {k = 1 & i 6= j}

ICS 2015 CP-Based Fault-Localization Michel Rueher 17

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Experiments

ICS 2015 CP-Based Fault-Localization Michel Rueher 18

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Experiments - Systems and tools

• LocFaults:

→ CPBPV (Constraint-Programming Framework for Bounded
Program Verification) to generate the CFG and CE

→ CP solver of IBM ILOG CPLEX

• BugAssist (Rupak Majumdar and Manu Jose):

→ CBMC

→ MaxSAT solver MSUnCore2

ICS 2015 CP-Based Fault-Localization Michel Rueher 19

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Experiments - Benchmarks

• TCAS :
• Aircraft collision avoidance system
• 173 lines of C code with almost no arithmetic operations
• The suite contains 41 faulty versions

• Tritype
Input: three positive integers, the triangle sides
Output:

• value 2 if the inputs correspond to an isosceles triangle
• value 3 if the inputs correspond to an equilateral triangle
• value 1 if the inputs correspond to a scalene triangle
• value 4 otherwise.

ICS 2015 CP-Based Fault-Localization Michel Rueher 20

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Experiments - Results on TCAS suite

• Computation times: no significant difference
• At most one deviation required except for version V41 (2

deviations required)
• Size of the set of suspicious instructions identified : in

general larger for BUGASSIST than for LOCFAULTS

• BUGASSIST identifies a bit more errors than
LOCFAULTS

• LOCFAULTS reports a set of MCS for each faulty path
→ error localization process is much more easier than with the

single set of suspicious errors reported by BUGASSIST

ICS 2015 CP-Based Fault-Localization Michel Rueher 21

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Experiments - Error on Tritype

• TritypeV1 : error in the last assignment of the program
• TritypeV2 : error in a nested condition, just before the last

assignment
• TritypeV3 : the error is an assignment and will entail a bad

branching
• TritypeV4: error in condition, at the beginning of the

program
• TritypeV5 : two wrong conditions in this program
• TritypeV6 : a variation that returns the perimeter of the

triangle
• TritypeV7 : a variation that returns the product of the 3

sides
• TritypeV8 : a variation that computes the square of the

surface of the triangle by using Heron’s formula
ICS 2015 CP-Based Fault-Localization Michel Rueher 22

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Experiments - Results on Tritype (cont.)

P CE E LocFaults BugAssist0 1 2 3

V1 {i = 2, j = 3, 54 {54} {26} {29, 32}
/

{26, 27, 32,

{48},{30},{25} {53, 57},{30}, 33, 36, 48,
k = 2} {25} 57, 68}

V2 {i = 2, j = 2, 53 {54}

{21}
{29, 57} /

{21, 26, 27,

{26}
{32, 44}

29, 30, 32,

{35},{27},{25} 33, 35, 36,
k = 4} {53},{27},{25} 33, 35, 36,

53, 68}

V3 {i = 1, j = 2, 31 {50}

{21}

{33, 45} /

{21, 26, 27,{26} 29, 31, 33,{29} 34, 36, 37,k = 1} {36},{31},{25} 49, 68}{49},{31},{25}

V4 {i = 2, j = 3, 45 {46} {45},{33},{25} {26, 32}
{32, 35, 49} {26, 27, 29,

{32, 35, 53} 30, 32, 33,

{32, 35, 57} 35, 45, 49,
k = 3} 68}

V5 {i = 2, j = 3, 32, {40} {26}
{32, 45}

/
{26, 27, 29,

{29}
{35, 49},{25} 30, 32, 33,{35, 53},{25} 35, 49, 68}k = 3} 45 {35, 57},{25}

V6 {i = 2, j = 1, 58 {58} {31} / /
{28, 29, 31,

{37},{32},{27} 32, 35, 37,
k = 2} 65, 72}

Suspicious statements on Tritype V1 – V7

ICS 2015 CP-Based Fault-Localization Michel Rueher 23

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Experiments - Results on Tritype (cont.)

P CE E LocFaults BugAssist0 1

V7 {i = 2, j = 1, 58 {58} {31}
{72, 37, 53,

{37},{27},{32}
49, 29, 35,
32, 31, 28,

k = 2} 65, 34, 62}

V8 {i = 3, j = 4, 61 {61} {29}

{19,61,79,

{35},{30},{25}

35, 27, 33,
30, 42, 29,
26, 71, 32,

k = 3} 48, 51, 54}

Suspicious statements on Tritype V8 – V9

ICS 2015 CP-Based Fault-Localization Michel Rueher 24

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Experiments - Results on Tritype (cont.)

Program
LocFaults BugAssist

P L P L
= 0 ≤ 1 ≤ 2 ≤ 3

TritypeV7 0, 722s 0, 051s 0, 112s 0, 119s 0, 144s 0, 140s 20, 373s
TritypeV8 0, 731s 0, 08s 0, 143s 0, 156s 0, 162s 0, 216s 25, 562s

Computation times for non linear Trityp programs (V8 – V9)

ICS 2015 CP-Based Fault-Localization Michel Rueher 25

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Related Work & Conclusion

ICS 2015 CP-Based Fault-Localization Michel Rueher 26

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Related Work

• BugAssist:

+ Global approach based on MaxSat
- Merges the complement of MaxSat in a single set of

suspicious statements
- Not efficient for programs with numeric statements

• System based on ranking of suspicious statements
(Tarantula, Ochiai, AMPLE Debugging JUnit Tests in
Eclipse, Jaccard,...)

+ Easy to implement
- Require a huge number of test case and an accurate

Oracle

ICS 2015 CP-Based Fault-Localization Michel Rueher 27

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Conclusion

• Flow-based and incremental approach

→ locates the errors around the path of the
counter-example

• Constraint-based framework

→ well adapted for handling arithmetic operations

→ can be extended in straightforward way for handling
programs with floating-point numbers computations

ICS 2015 CP-Based Fault-Localization Michel Rueher 28

D
ra

ft

Problem statement & Motivating example Formalization & Algorithms Experiments Related Work & Conclusion

Further Work: Improving constraint solving
process

• Adding redundant constraints

res = s*(s-i)*(s-j);
→ res ≥ s, res ≥ (s-i), res ≥ (s-j)

• Combining symbolic simplification with CSP filtering
techniques

res = s*(s-i)*(s-j)*(s-i);
→ identifying the square expression

ICS 2015 CP-Based Fault-Localization Michel Rueher 29

	Problem statement & Motivating example
	Formalization & Algorithms
	Experiments
	Related Work & Conclusion

